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Abstract-In nucleate boiling a bubble created at nucleation site on a heating surface grows, leaves 
the surface and rises. The fluid motion induced in the thermal boundary layer during this process is 
calculated and the heat flux carried by this liquid motion to a nucleation site is obtained. The heat flux 
thus calculated is equal to that transferred from the heating surface to the liquid by induction and to 
the latent heat carried away by the bubble per unit time. From these relations the following 
theoretical formula is obtained. 

AtJ = 0.114 n-t q9 

where A0 is a temperature difference between the temperature of heating surface and the saturation 
temperature, n is the number of nucleation sites per unit area and q is average heat flux. This closely 
resembles in form the following experimental formula which was obtained through measurement by 
Nishikawa : 

A@,,, = 0448 n-Q 9%. 

The numerical values comnuted from these two formulas are in fairly good agreement with each 
other. 
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radial horizontal distance from a 
nucleation site, m; 
radial horizontal distance from the 
nucleation site u, m; 
vertical distance from a heating 
surface, m ; 
radius of a growing bubble, m; 
radius of a rising bubble, m ; 
thickness of thermal boundary layer, 
m; 
vertical displacement of a fluid 
particle which exists at first on the 
outer edge of a thermal boundary 
Jayer, during a period T, m; 
a distance shown in Fig. 8, m; 
a distance shown in Fig. 8, m; 
distance from a source (or doublet) 
to an arbitrary point in the iiquid, m; 
distance from the reflected image of a 
source (or that of a doublet) to an 
arbitrary point in the liquid, m; 
a distance shown in Fig. 10, m; 
distance between two neighbouring 
bubbles, m; 
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x 
f , 
T, 

area of a heating surface, m2 ; 
time, h; 
time interval from an instant of the 
creation of a bubble nucleus to that 
of the succeeding bubble nucleus at 
the same nucleation site, h; 

f = f, frequency of bubble formation, l/h; 

% number of nucleation sites per unit 
area of a heating surface, l/m2 ; 

N = nS, number of nucleation sites on a 
heating surface; 

vi3 rising velocity of a bubble, m/h; 
% x-component of liquid velocity, m/h; 
6 y-component of liquid veIocity, m/h; 

$ 
velocity potential, m2/h; 

Ai, 
stream function, m2/h; 
difference between the temperature 
of heating surface and the saturation 
temperature of liquid, “CT; 

4, heat flux from heating surface, 
kcal/m2h; 

4 thermal conductivity of liquid, kcal/ 
mh degC; 



specific weight of liquid, kg/m?; 
specific heat of hquid, kcal/kg de&; 
specific weight of vapour, kg/m3 ; 
latent heat of liquid, kcal/kg. 

1. 1NTRODUCl”ION 

THERE are many experimental data [i-3] con- 
cerning nucleate boiling heat transfer and also 
many theoretical works [3-71 executed to clarify 
this problem. It may be said, however, that the 
phenomena remain far from being understood. 
The nucleate boiling is a kind of problem with 
non-reproducible character. The non-reproduc- 
ible character consists in the creation of bubble- 
nuclei. As the bubble-nuclei are created in very 
fine irregular cavities on heating-surfaces, their 
creation cannot be treated from the macro- 
scopic point of view and there is no alternative 
but to treat it as phenomena governed by 
chances. If we put the creation of bubble-nuclei 
out of consideration, the phenomena taking 
place thereafter-growing and rising of bubbles- 
\vill not have the non-reproducible character 
any longer and can be treated by the physics of 
contjnuum. Even the phenomena which occur 
after the appearance of bubble-nuclei have not 
yet been thoroughly understood. The author 
analysed these phenomena theoretically. The 
author proposes a hydrodynamic model as 
shown in the following. During the process in 
rvhich a bubble once created grows, leaves the 
heating surface and rises up, the liquid 
surrounding the bubble moves. In the vicinity of 
the heating surface, i.e. in the thermal boundary 
layer, the liquid flows gradually in the direction 
of nucleation site with the motion of bubbles 
being created one after another at the nucleation 
site. The heat carried by this liquid flow arrives 
at the nucleation site, evaporates the liquid and 
makes a bubble at the site grow. Using this 
model, the mechanism of nucleate boiling heat- 
transfer will be revealed theoretically. The ob- 
tained results are in fairly good agreement with 
the expe~mental data measured by ~ishikawa 131. 

sideration of heat transmission itself, sufbcient 
knowledge about the motion of liquid induced 
by the growing and rising of bubbles is required. 
The theory concerning this induced motion of 
the liquid is. however, given in the appendix for 
the sake of avoiding any complication. Referring 
to the results in the appendix, only the theorb 
concerning the heat transn~issioll proper I\ iii be 
described in the text, 

2.1 Furldamental relations 
It is a well-known fact that a heating surface 

is covered with a thermal boundary layer [ 1.X. 91. 
Heat is supplied from the heating surface to the 
thermal boundary layer through thermal conduc- 
tion. At nucleation sites on the heating surface 
bubbles are created, grow, leave the heating 
surface and rise. As will be mentioned in the 
appendix, a flow is induced in the liquid by the 
motion of bubbles. The liquid in the thermal 
boundary layer also. of course, flows and the 
heat contained in the thermal boundary layer 
is carried with it to the nucleation sites. The heat 
transferred from the heating surface to the liquid 
through thermal conduction balances wirh that 
carried by the liquidflowin the thermal boundary 
layer. Consequently the thickness of thermal 
boundary layer is kept constant approximately. 
The heat carried to a nucleation site evaporates 
the liquid and grows bubbles. Based on this 
model the fundamental equations are worked 
out. 

(i) Heat given from the heating surface to the 
thermal boundary layer. 

As shown in Fig. 1 we denote the mean thick- 
ness of the thermal boundary layer by 8. the 

2. THEORY OF NUCLEATE BOILING 
HEAT TRANSMISSION 

In this chapter the mechanism of nucleate FIG. 1. ‘Temperature distribution in a thermal 
boiling heat transfer is considered. For the con- boundary layer. 
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difference between the temperature of the heating 
surface and the saturation temperature by A0 and 
the thermal conductivity of the liquid by h. 
Assuming the linear change of temperature in 
the thermal boundary layer for the sake of 
simplicity, the heat flux supplied from the 
heating surface can be expressed as follows: 

6 varies in the course of time but the amount of 
its variation is known to be negligibly small 
through the calculation in the appendix (c.f. 
Appendix, A. 5). 

(ii) Heat flow in the thermal boundary layer. 
The liquid motion in the process of a bubble 

growing and rising is considered. This motion 
is somewhat complicated. The locus of a liquid 
particle which existed at first on the outer edge 
of a thermal boundary layer (P in Fig. 2) is 
treated. In the first period in which the bubble 
grows, the liquid particle moves from P to Q. In 
the next period in which the bubble rises, the 
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FIG. 2. The locus of a liquid particle which existed at 
first on the outer edge of a thermal boundary layer. 

particle moves back from Q to R. R is nearer just 
a little to the nucleation site than P. The vertical 
height of R is slightly lower thah that of P, if we 
disregard the extreme vicinity of the nucleation 
site. The vertical downward displacement in one 
cyclet T = l/f is denoted by 6,. We have con- 
sidered heretofore about an isolated nucleation 
site. There are, however, many nucleation sites 
on usual heating surfaces and the contribution 
of these nucleation sites to the liquid motion in 
the thermal boundary layer is to be superposed. 
In A.5 in the appendix the superposed vertical 
displacement is calculated. In the calculation of 

t If the interaction between succeeding bubbles is 
ignored, 6, is equal to the vertical displacement in the 
case of a single bubble moving away from the heating 
surface. 

this superposed displacement we assumed that 
nucleation sites are distributed on the heating 
surface in the equi-lateral triangular pattern as 
shown in Fig. 10. The size of bubbles r. and the 
bubble-forming frequency f in all the nucleation 
sites are assumed to be equal. The phases of 
bubble-formation at each nucleation sites are 
allowed to be different. The mean value of 6,/a 
over the heating surface is taken and is shown as 
follows : 

8 
* = cl(n r3)pn, 
6 

cl = 5.5, m = 1.16 (2) 

where n is the number of nucleation sites per 
unit area and r. is the radius of bubbles rising 
in the liquid. 

We now compare the state in the thermal 
boundary layer at a given instant with that after 
one cycle T. Since the phenomena are periodic, 
the two states must be same. Heat being supplied 
from the heating surface, the outer edge of 
thermal boundary layer itself returns to the 
original level P (in Fig. 2) after one cycle T, 
though the liquid particle which was at first at P 
is displaced downward and does not come back 
to the original level. From Fig. 3 the heat 
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FIG. 3. 

supplied from the heating surface is expressed as 
follows : 

q+d*Aef (3) 

where cP and y are specific heat and specific 
weight of the liquid respectively and f is the 
frequency of bubble-formation. 

(iii) Evaporation. 
As mentioned above, the liquid in the thermal 

boundary layer flows to the nucleation sites. 
Heat in company with the liquid motion also 
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moves and at last arrives at the nucleation sites, 
where the heat vaporizes the liquid and makes 
bubbles grow. 

The latent heat consumed in the bubble- 
formation per unit time and per unit area of the 
heating surface is expressed as follows : 

q = 457 3- r,‘, yv k n j 

where yV and k are the specific weight and the 
latent heat of the vapour. In the actual boiling, 
bubbles continue to grow after leaving the 
heating surface. In our model, however, we 
assumed for simplicity that any growth of 
bubbles does not occur in the rising process. 

(iv) A relation found by Jakob. 
Jakob [l] found previously the following 

relation. 

f r0 = c2, ca = 200 m/h. (5) 

Qualitative explanation of this relation seems to 
be possible through the theoretical consideration 
of the liquid flow due to bubble-motions. The 
numerical value of c2 determinated by Nishikawa 
[lo] is used. 

2.2 The theoretical result and its comparison lvith 
experimental data 

Five equations (l-5) are obtained in the last 
subsection. Independent variables involved in 
these equations are seven. Eliminating four 
variables from the five equations, a relation con- 
taining three variables can be obtained. If one 
more equation could be obtained, the relation 
between the two variables, e.g. q and LU, would 
be obtained. The very equation which is not yet 
obtained would indicate the microscopic condi- 
tion of the creation of bubble-nuclei at the fine 
irregular cavities on the heating surfaces. As 
mentioned in the introduction, the phenomena 
of nuclei-creation have a non-reproducible 
character and cannot be treated by the physics 
of continuum. Without touching this condition, 
we proceed with the analysis. Eliminating rO, 6, 
6, andf, the following formula is obtained 

From (2) and (5) m = (7/6), L’~ = 5.5, L’~ =.- 200 
m/h. Substituting them into (6) we have 

Aij ZZZ 0.4 (cp y A)-! (yV k)i nm-:q”f. (7) 

Considering the nucleate boiling of water under 
atmospheric pressure, we put h = 0.558 kcal/ 
mh degC, cP =.= 1 kcal/kg degC, y m= 1000 kg/m”, 
yp =- 0.6 kg/n? and k :- 540 kcal/kg. into (7) 
and obtain 

30 Z 0.114 n-: q’. (8) 

For the purpose of comparison ivith this 
theoretical result, the following experimental 
formula is made by the author from Nishikawa’s 
measurements [3, p. 233, Fig. 131. 

M,,, = 0.0448 n-A 48. (9) 

The definition of it in Nishikawa’s paper is 
not the same as that in the present paper. fz used 
in the equation (9) is one conforming to our 
definition. 

The two formulas (8) and (9) are closely 
similar in form. Though the indices of II are 
slightly different, those of q coincide perfectly 
with each other. Their ratio is given by the 
following formula 

Ae 
-.- I 2.55 n-1,1”. 

AL9 =P 

(10) 

Equation (10) is shown in Fig. 4; it has the 
values not far from 1 over a very wide range of n. 
The experimental range of n by Nishikawa is 
about lo2 to 105. 

Thus the mechanism of the nucleate boiling 
heat transfer can be explained well by the hydro- 
dynamic model established by the author. 

2 

:: II--- 2: I __________ -__ _-- 
o- 

102 103 104 105 
n 

FIG. 4. The ratio between the calculated and the 
measured 66. 
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3. CQNCLUSIONS 

The phenomena of the nucleate boiling heat 
transfer consist of two parts with quite different 
characters. One is the origination of bubble 
nuclei at fine cavities on heating surfaces, which 
has a non-reproducible character from the 
macroscopic point of view and cannot be treated 
with the ordinary method of the physics of 
continuum. The other is the heat transmission 
by convective liquid flow in the thermal boundary 
layer induced by the growing and rising of 
bubbles; this may be explained by the ordinary 
method of the continuum-physics. It would be 
reasonable that these two parts are treated 
separately. By establishing a hydrodynamic 
model of the nucleate boiling, the latter part of 
the problem is analysed by the author and a 
theoretical formula obtained. The theoretical 
result being in good agreement with experimental 
data, the model proposed by the author may be 
considered to have reality. 

If we want to understand the whole process 
including the former part with non-reproducible 
character, we must enter into the mechanism of 
the creation of bubble-nuclei which relates 
closely to the fine cavities distributed irregularly 
on heating surfaces and may be treated only by 
using statistical methods. Thus results obtained 
in this paper may be said to show the limit 
which can be approached by the physics of 
continuum. 
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APPENDIX. LIQUID MOTION INDUCED BY 
BUBBLES GROWING AND RISING 

A.1 The general aspect of the liquid motion 
induced by bubbles 

Isshiki and Tamaki [I I] took a Schlieren 
motion picture of bubbles rising from a heated 
wire and noticed that every bubble trails its own 
tail, as it were, of a mushroom type. The author 
1123 proposed that the tails may be explained by 
a Lagra~gian motion of thermal bo~dary layer 
which exists at first near the heated wire, and 
calculated the motion theoretically. The changing 
shape of the taif of the bubble with time are illus- 
trated in Fig. 5, which are in good agreement 
with those obtained by the Schlieren motion 
picture. 

In the nucleate boiling from a heated wire, as 
we have seen, the liquid flow induced by the 
bubbIe-motion plays a very important role. In 
the nucleate boiling from a flat heating surface, 
as in our case, the liquid-flow induced by the 
bubble motion is expected to be also very im- 
portant. The condition in the case of the latter, 

6 

5 i-7 

\ Heated wire 

FIG. 5. The changing shape of the tail of a bubble 
with time. 



964 T. HARA 

however, is somewhat different from the case of 
the former. In the case of a heated wire the flow 
is induced in the whole space as shown in Fig. 6a, 
but in the case of a heated flat plate the fiow is 

(a: ib) 

FIG. 6. Stream lines around a bubble. 
(a) A bubble is leaving a heated wire. 
(b) A bubble is leaving a heated flat plate. 

restricted to the upper half of the space as 
shown in Fig. 6b, and the liquid near the flat 
plate is expected to flow parallel to the plate. 
Consequently the liquid in the thermal boundary 
layer over the plate is expected also to move 
toward nucleation site. Going into detail, we 
see that at first the liquid in the thermal boundary 
layer moves away from the nucleation site with 
the bubble-growing and then moves back 
toward it with the bubble-rising. The resultant 
displacement, that is, the algebraic sum of these 
two displacements with opposite directions, has 
the direction toward the nucleation site. Accom- 
panied by the to-and-fro motion of the liquid, 
an unsteady velocity boundary layer is expected 
to be generated on the heating surface. Its 
thickness can be easily estimated and is known to 
be much smaller than that of the thermal 
boundary layer. Thus the velocity boundary layer 
is ignored in the following theoretical analysis 
and the flow of the liquid is treated as a potential 
flow. 

A.2 Liquid motion induced by bubble-grollYng 
The liquid surrounding a bubble which is 

growing on a heating surface is pushed away. 
Taking a reflected image into account as shown 
in Fig. 7, the velocity potential & of the liquid 
motion induced by the bubble-growing on the 
heating surface can be expressed approximately 
as follows : 

FIG. 7 

where I’ is the radius of the growing bubble, 
which is a function of time t, p1 is the distance 
from an arbitrary point P to a source Q and 
p2 is that from P to Q’ which is the reflected 
image of Q. The third and fourth terms of the 
right-hand side of (11) are those which correct 
the deformation of the bubbles deviating from 
spheres caused by the existence of the reflecting 
image; b depends on the time rate of the growing 
of the bubble and can be determined approxi- 
mately as follows. The velocity potential for an 
isolated bubble, without reflected image, ic 
expressed as +is --: b/p. The liquid velocity on 
the surface of the bubble is 

which is equal to (dr/dt). Namely 

(12) 

From (11) and (12) the velocity field in the 
liquid is determined. Accordingly, the motions 
of a liquid particle with time can be determined 
from these equations and the locus of the particle 
can be obtained. The co-ordinates x, J of a 
liquid particle can be calculated through the 



THE MECHANISM OF NUCLEATE BOILING HEAT TRANSFER 965 

integration of zi, = a#@x and 0, = $&My with 
time t as follows: 

x = xo + f; Z&G Y) dt -I 

y = Yo = f:, 01(x, Y) dt J 
(13) 

where x0 and y. are their values at the instant 
t = 0 when the nucleus of the bubble is created. 

A.3 Liquid motion induced by bubble-rising 
The velocity potential #a (observed from a 

point at rest) and the stream function #2 (ob- 
served from a point fixed to the moving bubble) 
in the liquid in which a bubble with a radius r. 
is rising from a heating surface with a velocity 
U, = constant can be expressed as follows: 

iq52=-q(y-h) ; 3+~(Y+h)(~)2 0 

where p1 is the distance from an arbitrary point 
P to a doublet Q, pz is that from P to Q’ which 
is the reflected image of Q, and h is the distance 
from the heating surface to Q as shown in Fig. 8; 
h is, of course, a function of time. The form of 
the bubble is determined from the following 
equation 

1 - (i)“+ (;)“=O. (16) 

When the doublet Q is sufliciently apart from 
the heating surface, the third term of (16) is small 
and the form determined by (16) is approximately 
spherical. When Q is near the surface, the form 
deviates from a sphere. Practically, the deviation 
is not very large, as explained in the footn0te.t 
As the surface expressed by (16) deviates from 
a sphere with the decreasing of h, even if the 
deviation is small, the rising velocities of every 
portion on the surface (16) are different from 
each other. We define U. as the rising velocity 
of the lowest point E of the surface (16) in 
Fig. 8. Taking e as the distance from E to the 
heating surface, we have 

de 
dt = uo. (17) 

From (16) 

1- (A)‘+ (K&JLO* (18) 

Thus, the velocity field can be determined as 
a function of time from equations (14), (17) and 
(18). The co-ordinates of the liquid particle x and 
y can be calculated through integration z+, - 
+,/ax and v, = &&jay with time as follows: 

x = x, + j:, u, (xt Y) dt 3 

Y==K-tjt, ’ *e (x,Y) dt j 
(19) 

where x1 and y1 are their values at the instant of 
t, when the bubble leaves the heating surface. 

Y 
A.4 The motion of liquid particles ~Ihich exist tat 

Jirst on the outer edge of the thermal boundary 
Iayer 

x 

In this section the motions of liquid particles 
which exist at first on the outer edge of thermal 
boundary layer are traced theoretically. If we 
consider the fluid motion only which occurs in 
the vicinity of the heating snrface, the velocities 
can be expressed rather simply. In the process of 

/ p2 

. t Strictly speaking, the surface expressed by (16) 
0 \ 

I \ 
; , 

\ a’ ; 7 ‘\ ,’ 
‘._ __I’ 

FIG. 8. 

cannot contact with the heating surface without tending 
of h to 0. As li tends to 0, the deviation of the surface 
from a sphere becomes remarkable. But, if Ir is taken as 
small as O-7 r,, the distance from the lower surface of 
(16) to the heating surface becomes smaller than 0.02 rO. 
The surface in this case can be considered to contact 
with the heating surface approximately and its deviation 
from a sphere is not large. 
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the bubble-growing, u1 and c1 can be obtained 
from equation (11) under the condition y < Y as 
follows : 

In the process of the bubble-rising, U, and I‘~ can 
be obtained from (14) under the condition .I’ 4 /I 
as follows : 

s components of the velocities ut and u, are 
independent of y. y components of the velocities 
f:1 and 2; are products of y and functions of .Y 
only. 

Denoting the thickness of thermal boundary 
layer as 6, the loci of the motion of the liquid 
particles which were at first on the outer edge of 
the thermal boundary layer are obtained from 
(13), (19), (20) and (21). The loci thus obtained 
have such a shape as shown in Fig. 2. The locus 
shown in the figure is correct in shape, but is 
exaggerated in size. Its actual proportion to the 
thickness of thermal boundary layer 8 is far 
smaller than that shown in the figure. A liquid 
particle which exists at first on the outer edge of 
the thermal boundary layer P was washed away 
to the point Q with the growing of a bubble. 
Then the liquid particle comes back to the point 
R with the rising of the bubble from the heating 
surface to a point at infinity. As a matter of fact, 
if the height of the bubble from the heating 
surface h exceeds 5 rO, even though the bubble 
does not go to the point at infinity, the liquid 
particle can be considered practically to reach 
the point R. And the horizontal location of the 
point R is nearer to the nucleation site than the 
original point P. We denote the vertical dis- 
placement from P to R by 6,. The computed 

values of S,.8 vs. x/r, are shown in Fig. 9. 
The relation can be approximated as follows: 

In the last section the case of an Isolated 
nucleation site is considered. In this section \\c 
deal with the cases where many nucleation sites 
distribute on the heating surface: 6,;s for these 
cases can be obtained by summing up all the 
contributions from each nucleation site on the 
heating surfaces. 

We assume that the nucleation sites are 
arranged on the heating surface in the equi- 
lateral triangular pattern as shown in Fig. IO. 
The length i shown in the figure is taken as a 
characteristic length to determine the distance 
between two neighbouring nucleation sites. In 
other words I determines the surface density of 
nucleation sites of the heating surface. We also 
assume that the sizes of rising bubbles are all 
the same independently of nucieation sites and 
that the periods of the bubble formation in all 
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the nucleation sites are also identical.? Conse- 
quently the total vertical displacement of a 
liquid particle during one period T can be ob- 
tained simply through the summation of the 

FIG. 10. The pattern of distribution of nucleation 
sites. 

contributions from all the nucleation sites. Thus 
the total vertical displacement at an arbitrary 
point P on the heating surface can be written 
using the equation (22) as follows: 

(23) 

where x, is the distance from P to an arbitrary 
nucleation site V, and the summation x is 
carried out over all the nucleation sites v on the 
heating surface. 

If I is elongated or contracted, x, varies with 
it proportionally. Thus we can put as follows: 

x, = c, I (24) 

where c, is a proportional constant. 
The number of nucleation sites per unit area n 

varies with the length I. The relation between 
n and 1 is expressed as follows; 

‘Substituting (24) and (25) into (23), we get 

= 0.383 (n rz)l.16 x ~$2.32. (26) 
Y 

t The phases of the bubble-formation in each nuclea- 
tion site need not always be equal. 

H.M.-3Q 

(S,/S)p thus obtained is, of course, a function of 
the position P. 

Actually the summation of the series 2 c;2.32 

was performed in the following way. Th; thirty 
terms caused by the nearest thirty nucleation 
sites from P are summed up directly. These 
thirty, nucleation sited, are in the inside of a 
circle with a radius of about 5 I and P as its 
centre. Concerning the terms caused by the 
nucleation sites in the outside of the circle, the 
terms are calculated considering approximately 
that the nucleation sites are distributed con- 
tinuously over the heating surface, and con- 
verting the summation into an integral. Then, the 
summation of the first thirty terms and the 
integral are summed up together. 

In the next place we want to take the mean 
value of (S.JS)p over the heating surface. This 
can be obtained through taking a mean value 
over a hexagonal portion of the heating surface 
around a nucleation site B in Fig. 10. The mean 
value is indicated by (SJS),,,,. In the practical 
calculation, an annular area as shown in Fig. 10 
is used instead of the hexagonal area for the 
sake of simplicity. The outer radius of the 
annular area is equal to I and the inner one is 
Z/4. The reason why the inner circular area with 
radius Z/4 is hollowed out is that the relation 
shown in (22) does not hold in the vicinity of 
the nucleation site.1 The error which is expected 
to occur through the hollowing out of the inner 
circular area is, however, supposed to be so small 
that it can be neglected, because its area is only 
one-sixteenth of that of the outer circle. 

The mean value thus obtained is expressed as 
follows: 

s 0 3 
s = 5.5 (71 rz)l.16. (27) 

mean 
For example, in the case where r. = 2 mm and 

n = $ cm-2, (6,/S),,,, = O-026. 

A.6 Qualitative explanation of the relation found 
by Jakob 

The liquid motion in the surrounding of a 
rising bubble is caused by the following two 

- 
-t In truth the region where (22) does not hold depends 
upon rO and is independent of I. In the text we assumed 
that the portion where (22) does not hold is so small that 
it is in the inside of the inner circle with a radius 114. 
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actions. One is the pushing-up of the liquid in the 
topside of the bubble and the other is the filling- 
up of the cavity left by the moving bubble with 
the liquid. If many bubbles would rise from a 
nucleation site one after another at a very small 
spacing with each other, the greater part of the 
cavity left by a preceding bubble would be filled 
up with the liquid portion pushed up by the 
succeeding bubble and consequently the liquid 
at some distances from the line of the bubbles 
would scarcely move. In this case the liquid 
motion in the thermal boundary layer would not 
occur, so that the formation of bubbles could 
not take place. Thus it can be said, at least, that 
a necessary condition for the occurrence of the 
formation of bubbles is the sufficient largeness of 
the spacing L between two neighbouring bubbles. 
To be exact, the ratio of the spacing L to the 
radius of bubbles r. cannot be smaller than a 
certain lower limit c. 

L 
r 

.> c .= const. (28) 
0 

The frequency of bubble-formation at a nuclea- 
tion site can be written by 

f- 7 (29) 

where U, is the velocity of bubble-rising. 
From (28) and (29) 

(30) 

From the experiment performed by Datta 1131, 

U, can be assumed approximately to be constant, 
so that 

f r0 < con&. ==-. ch. (31) 

In the next place we should like to explain that 
only the sign of equality in (3 I ) is possible. It is 
obvious from (4) that n, f and r. must increase 
with the heat flux q. Among these three variables, 
only a has a different character from two other 
varlabiesfand ro. n cannot increase continuously 
but takes only discrete values, that is, n increases 
stepwise. We denote the area of the heating 
surface by S. The number of the nucleation sites 
on the heating surface is expressed by N -- U.S. 
Now we suppose a case in which the heat-flux y 
would increase gradually.,fand r(i would increase 
with it also gradually. Only N could not incrcasc 
until the increment of the heat-flux amounts to a 
certain finite value Aq. At the instant when rhe 
increment of the heat-flux comes up to this 
definite value hq, N increases by 1. that is. 
jumps to N + 1. Consequently rr ::: N/S jumps 
to (N +- 1)/S. The amount of heat-flux increment 
-Iq required to make N jump to N + I is known 
to be considerably large from the Nishikawa’s 
experiment [2]. Returning to the subject. VL‘ 
consider the case again where the heat-flus t{ in 
increasing gradually ;fr, increase with q and get 
nearer to the critical value (‘z in (31). As -II/ 
required for jumping of N by 1 is considerably 
large, it is considered to be probable that ,f’r,,, 
becomes equal to c, just before N jumps to N - 1 I 
fn this way the equality 

,f’r, :---. ‘hz (32) 

is always satisfied. This is the very relation that 

was found by Jakob Cl]. 

IGsumC--Dans ~~~u!iition nuci&e, la bulle qui prend naissance sur la surface chauffke grossit, quitte 
la paroi et s’6lke. Le mouvement induit dans la couche &mite theemique au tours de ce processus est 
calculb et on obtient le flux de chaleur transport& par ce mouvement liquide. Le flux de chaleur ainsi 
calculi: est egal B celui transmis, par conduction, de la surface chauff6e au liquide et B la chaleur latente 
enlevee par la bulle par unit& de temps. A partir de ces relations. on obtient la formule th&orique 
suivante 

oti dt? est la diff&ence entre la tem~rat~re de fa surface chauffante et la temperature de saturation, u 
est le nombre de “sites de formation de b&es” par unit& de surface et (I le flux de chaleur moyen. Elle 
a une forme voisine de celle de la formule expCrimentale obtenue B partir des mesures de Nishikawa 

S&, ::= 0,448 n ~:, y: 

Les valeurs numbiques calculCes B partir de ces deux formules sont en bon accord. 
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Zusammenfassung-Beim Blasenverdampfen bildet sich an der HeizSche an einem Keim eine Blase, die 
wachst, sich von der F&he ablost und aufsteigt. Die wahrend dieses Prozesses in der therm&hen 
Grenzschicht ausgeloste Fliissigkeitsbewegung wird berechnet und man erhalt den durch die Bewe- 
gung der Fltissigkeit zur Keimstelle hin hervorgerufenen Warmestrom. Der so ermittelte Warmefluss ist 
gleich dem von der Heiz&che an die Fliissigkeit durch Leitung tibertragenen und gleich der von den 
Blasen pro Zeiteinheit abgeftihrten latenten W&me. Aus diesen Beziehungen erhalt man folgende 
theoretische Formel 

A0 = 0,114 n-iq.5 

mit A8 als Temperaturdifferenz zwischen Heizllkhe und Sattdampf, n der Anzahl der Keime pro 
Flkheneinheit und q dem mittleren Warmefluss. Diese Formel ist ihrer Form nach der von Nishi- 
kawa gefundenen Gebrauchsformel 

At&, = 0,448 n-iq5 

Ihnlich. Die nach beiden Formeln errechneten Zahlenwerte stehen miteinander in leidlich guter 
Ubereinstimmung. 

AHHOT~~SI-IIPH ny3bIpbKOBOM KHneHIlll IIysbIpeK, o6pa3ymwalicR B OnpegeJIeHHoM MeCTe 

Ha noBepxHocTH Harpesa, pacTeT, OTpbIBaeTCJl OT HW II llOflHHMaeTCZ4 BBepX. B CTaTbe 

l,pllBO~HTCflpZWIeT ABkl)fFeHIIR~KIIAKOCTH,BO3HAKaH)nZerOB TeIIJlOBOM IIOrpaHIlYHOM CJIOeBO 
BpeMR 3TOr0 IIpO~WCa, a TaKHle TellJIOBOI'O IIOTOKa K MWTJ' Obpa3OBaHm IIy3bIpbKa. 

&IYRCneHHaH TaKHM o6paaoM HHTeHCHBHOCTb TeIIJlOIIepeHOCa BKJIIO'JaeT B ce6n TeIlJIOBOii 
nOTOK Tt?IIJrOIIpOBORHOCTH OT IIOBepXHOCTA narpesa K ~IIJJKO~TH II cKpbITyI0 Tennory, 

yHOCHMyI0 IIy3bIpbKaMEI B eAElHElUy BpeMeHH. 

I43 ~THX cooTHomemti nony4eKa cneRymlrlaE pacveTHan *opMyna: 

AB= o,114n-fqS 

rfie Lie--pfd3HOCTb TeMIIepaTypbl IIOBepXKOCTI4 Harpesa II TeMnepaTypbI I~acbrqeHnFl,n-YImIo 

MeCT o6pa3oBamm IIy3blpbKOB Ha e@iHIUIy IIJIOIQaEM II q-CpenHfIJl BeJIWIHHa TeIIJIOBOrO 

IIOTOKa.YpaBHeHlle II0 CBOeti @OpMe 6m3Ko K 3KCIIepHMeHTaJIbHOt 3aBPICHMOCTH 

A&p = 0,448 n-:q3 

%CJIeHHbIe BeJIIPI~HbI,lIOJIyYeHHbIe PI3 3T;;60F.yX @OpMyJI, XOpOIIIO COrJIaCyIOTCH MeWKAy 


