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THE MECHANISM OF NUCLEATE BOILING HEAT TRANSFER
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Abstract—In nucleate boiling a bubble created at nucleation site on a heating surface grows, leaves
the surface and rises. The fluid motion induced in the thermal boundary layer during this process is
calculated and the heat flux carried by this liquid motion to a nucleation site is obtained. The heat flux
thus calculated is equal to that transferred from the heating surface to the liquid by conduction and to
the latent heat carried away by the bubble per unit time. From these relations the following
theoretical formula is obtained.

A8 = 0-114 n-1 gt

where A4 is a temperature difference between the temperature of heating surface and the saturation
temperature, » is the number of nucleation sites per unit area and ¢ is average heat flux. This closely
resembles in form the following experimental formula which was obtained through measurement by
Nishikawa:

ABexp = 0-448 n-4 g8,

The numerical values computed from these two formulas are in fairly good agreement with each
other,

NOMENCLATURE S, area of a heating surface, m?;
radial horizontal distance from a 1, time, h;
nucleation site, m; T, time interval from an instant of the
radial horizontal distance from the creation of a bubble nucleus to that
nucleation site v, m; of the succeeding bubble nucleus at
vertical distance from a heating the same nucleation site, h;
surface, m; 1
radius of a growing bubble, m; = 7 frequency of bubble formation, 1/h;
radius of a rising bubble, m;
thickness of thermal boundary layer, n, number of nucleation sites per unit

m;
vertical displacement of a fluid
particle which exists at first on the

area of a heating surface, 1/m?;

N = nS, number of nucleation sites on a

heating surface;

outer edge of a thermal boundary U, rising velocity of a bubble, m/h;
layer, during a period 7, m; u, x-component of liquid velocity, m/h;
a distance shown in Fig. 8, m; v, y-component of liquid velocity, m/h;
a distance shown in Fig. 8, m; é, velocity potential, m2/h;

distance from a source (or doublet) b, stream function, m?/h;

to an arbitrary point in the liquid, m; A8, difference between the temperature
distance from the reflected image of a of heating surface and the saturation
source (or that of a doublet) to an temperature of liquid, °C;

arbitrary point in the liquid, m; q, heat flux from heating surface,
a distance shown in Fig. 10, m; kcal/mzh;

distance between two neighbouring A, thermal conductivity of liquid, kcal/

bubbles, m;
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mh degC;
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Vs specific weight of liquid, kg/m?;
Cp- specific heat of liquid, kecal/kg degC;
Ve specific weight of vapour, kg/m?;
k, latent heat of liquid, kcal/kg.

1. INTRODUCTION
THERE are many experimental data [1-3] con-
cerning nucleate boiling heat transfer and also
many theoretical works [3-7] executed to clarify
this problem. It may be said, however, that the
phenomena remain far from being understood.
The nucleate boiling is a kind of problem with
non-reproducible character. The non-reproduc-
ible character consists in the creation of bubble-
nuclei. As the bubble-nuclei are created in very
fine irregular cavities on heating-surfaces, their
creation cannot be treated from the macro-
scopic point of view and there is no alternative
but to treat it as phenomena governed by
chances. If we put the creation of bubble-nuclei
out of consideration, the phenomena taking
place thereafter—growing and rising of bubbles—
will not have the non-reproducible character
any longer and can be treated by the physics of
continuum. Even the phenomena which occur
after the appearance of bubble-nuclei have not
yet been thoroughly understood. The author
analysed these phenomena theoretically. The
author proposes a hydrodynamic model as
shown in the following. During the process in
which a bubble once created grows, leaves the
heating surface and rises up, the liquid
surrounding the bubble moves. In the vicinity of
the heating surface, i.e. in the thermal boundary
layer, the liquid flows gradually in the direction
of nucleation site with the motion of bubbles
being created one after another at the nucleation
site. The heat carried by this liquid flow arrives
at the nucleation site, evaporates the liquid and
makes a bubble at the site grow. Using this
model, the mechanism of nucleate boiling heat-
transfer will be revealed theoretically. The ob-
tained results are in fairly good agreement with
the experimental data measured by Nishikawa [3].

2. THEORY OF NUCLEATE BOILING
HEAT TRANSMISSION
In this chapter the mechanism of nucleate
boiling heat transfer is considered. For the con-
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sideration of heat transmission itself, sufficient
knowledge about the motion of liquid mduced
by the growing and rising of bubbles is required.
The theory concerning this induced motion of
the liquid is, however, given in the appendix for
the sake of avoiding any complication. Referring
to the results in the appendix. only the theory
concerning the heat fransmission proper will be
described in the text,

2.1 Fundamental relations

It is a well-known fact that a heating surface
is covered with a thermal boundary layer [1. 8. 9}.
Heat is supplied from the heating surface to the
thermal boundary layer through thermal conduc-
tion. At nucleation sites on the heating surface
bubbles are created, grow, leave the heating
surface and rise. As will be mentioned in the
appendix, a flow is induced in the liquid by the
motion of bubbles. The liquid in the thermal
boundary layer also, of course, flows and the
heat contained in the thermal boundary layer
is carried with it to the nucleation sites. The heat
transferred from the heating surface to the liquid
through thermal conduction balances with that
carried by the liquid flow in the thermal boundary
layer. Consequently the thickness of thermal
boundary layer is kept constant approximately.
The heat carried to a nucleation site evaporates
the liquid and grows bubbles. Based on this
model the fundamental equations are worked
out.

(i) Heat given from the heating surface to the
thermal boundary layer.

As shown in Fig. 1 we denote the mean thick-
ness of the thermal boundary layer by &. the

T

3
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Fic. 1. Temperature distribution in a thermal

boundary layer,
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difference between the temperature of the heating
surface and the saturation temperature by Af and
the thermal conductivity of the liquid by A.
Assuming the linear change of temperature in
the thermal boundary layer for the sake of
simplicity, the heat flux supplied from the
heating surface can be expressed as follows:

(M

8 varies in the course of time but the amount of
its variation is known to be negligibly small
through the calculation in the appendix (c.f.
Appendix, A.5).

(ii) Heat flow in the thermal boundary layer.

The liquid motion in the process of a bubble
growing and rising is considered. This motion
is somewhat complicated. The locus of a liquid
particle which existed at first on the outer edge
of a thermal boundary layer (P in Fig. 2) is
treated. In the first period in which the bubble
grows, the liquid particle moves from P to Q. In
the next period in which the bubble rises, the

Q=A§-

| P_r—2r0
Tt "
: R
Nucleation Thermal
site 5 boundary
Heating surface layer

FIG. 2. The locus of a liquid particle which existed at
first on the outer edge of a thermal boundary layer.

particle moves back from Q to R. R is nearer just
a little to the nucleation site than P. The vertical
height of R is slightly lower than that of P, if we
disregard the extreme vicinity of the nucleation
site. The vertical downward displacement in one
cyclet T = 1/f is denoted by 8_,. We have con-
sidered heretofore about an isolated nucleation
site. There are, however, many nucleation sites
on usual heating surfaces and the contribution
of these nucleation sites to the liquid motion in
the thermal boundary layer is to be superposed.
In A.5 in the appendix the superposed vertical
displacement is calculated. In the calculation of

1t If the interaction between succeeding bubbles is
ignored, 8, is equal to the vertical displacement in the
case of a single bubble moving away from the heating
surface.
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this superposed displacement we assumed that
nucleation sites are distributed on the heating
surface in the equi-lateral triangular pattern as
shown in Fig. 10. The size of bubbles r, and the
bubble-forming frequency fin all the nucleation
sites are assumed to be equal. The phases of
bubble-formation at each nucleation sites are
aliowed to be different. The mean value of 6,/6
over the heating surface is taken and is shown as
follows:

8*

e @
where n is the number of nucleation sites per
unit area and r, is the radius of bubbles rising
in the liquid.

We now compare the state in the thermal
boundary layer at a given instant with that after
one cycle 7. Since the phenomena are periodic,
the two states must be same. Heat being supplied
from the heating surface, the outer edge of
thermal boundary layer itself returns to the
original level P (in Fig. 2) after one cycle 7,
though the liquid particle which was at first at P
is displaced downward and does not come back
to the original level. From Fig. 3 the heat

=cfnrdm, ¢ =255 m=116

Heating
surface

FiG. 3.

supplied from the heating surface is expressed as
follows:

1 .
g =5 o5, A8f 3

where ¢, and y are specific heat and specific
weight of the liquid respectively and fis the
frequency of bubble-formation.

(iii) Evaporation.

As mentioned above, the liquid inthe thermal
boundary layer flows to the nucleation sites.
Heat in company with the liquid motion also
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moves and at last arrives at the nucleation sites,
where the heat vaporizes the liquid and makes
bubbles grow.

The latent heat consumed in the bubble-
formation per unit time and per unit area of the
heating surface is expressed as follows:

7
q:4,37 rywknaf (4)

where y, and k are the specific weight and the
latent heat of the vapour. In the actual boiling,
bubbles continue to grow after leaving the
heating surface. In our model, however, we
assumed for simplicity that any growth of
bubbles does not occur in the rising process.

(iv) A relation found by Jakob.

Jakob [1} found previously the following
relation.

fro= c, ¢; = 200 m/h. &)
Qualitative explanation of this relation seems to
be possible through the theoretical consideration
of the liquid flow due to bubble-motions. The

numerical value of ¢, determinated by Nishikawa
{10] is used.

2.2 The theoretical result and its comparison with
experimental data

Five equations (1-5) are obtained in the last
subsection. Independent variables involved in
these equations are seven. Eliminating four
variables from the five equations, a relation con-
taining three variables can be obtained. If one
more equation could be obtained, the relation
between the two variables, e.g. ¢ and Af, would
be obtained. The very equation which is not yet
obtained would indicate the microscopic condi-
tion of the creation of bubble-nuclei at the fine
irregular cavities on the heating surfaces. As
mentioned in the introduction, the phenomena
of nuclei-creation have a non-reproducible
character and cannot be treated by the physics
of continuum. Without touching this condition,
we proceed with the analysis. Eliminating ro, 8,
3, and f, the following formula is obtained

(2m-1)/4
e (41”6:2\&],() " n»-} q(5—2m)/4' (6)
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From (2) and (5) m = (7/6), ¢; = 55, ¢. == 200
m/h. Substituting them into (6) we have

Ab = 0-4 (cpy N~} (yo k)P nt gt (7)

Considering the nucleate boiling of water under
atmospheric pressure, we put A = 0-558 kcal/
mh degC, ¢ == 1 kcal/kg degC, y = 1000 kg/m?,
ye = 0-6 kg/m® and k = 540 kcal/kg, into (7)
and obtain
Af = 0114 ni g%, (8)
For the purpose of comparison with this
theoretical result, the following experimental
formula is made by the author from Nishikawa’s
measurements [3, p. 233, Fig. 13].

AbBexp = 0-0448 n— g5, 9)
The definition of n in Nishikawa’s paper is
not the same as that in the present paper. » used
in the equation (9) is one conforming to our
definition.

The two formulas (8) and (9) are closely
similar in form. Though the indices of » are
slightly different, those of ¢ coincide perfectly
with each other. Their ratio is given by the
following formula

Af

e === s —-1/12
Abors 2:55n . (10}

Equation (10) is shown in Fig. 4; it has the
values not far from 1 over a very wide range of a.
The experimental range of # by Nishikawa is
about 10% to 10°.

Thus the mechanism of the nucleate boiling
heat transfer can be explained well by the hydro-
dynamic model established by the author.

10% 10? 10* 108

n

FiG. 4. The ratio between the calculated and the
measured A8,
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3. CONCLUSIONS

The phenomena of the nucleate boiling heat
transfer consist of two parts with quite different
characters. One is the origination of bubble
nuclei at fine cavities on heating surfaces, which
has a non-reproducible character from the
macroscopic point of view and cannot be treated
with the ordinary method of the physics of
continuum. The other is the heat transmission
by convective liquid flow in the thermal boundary
layer induced by the growing and rising of
bubbles; this may be explained by the ordinary
method of the continuum-physics. It would be
reasonable that these two parts are treated
separately. By establishing a hydrodynamic
model of the nucleate boiling, the latter part of
the problem is analysed by the author and a
theoretical formula obtained. The theoretical
result being in good agreement with experimental
data, the model proposed by the author may be
considered to have reality.

If we want to understand the whole process
including the former part with non-reproducible
character, we must enter into the mechanism of
the creation of bubble-nuclei which relates
closely to the fine cavities distributed irregularly
on heating surfaces and may be treated only by
using statistical methods. Thus resuits obtained
in this paper may be said to show the limit
which can be approached by the physics of
continuum.
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APPENDIX. LIQUID MOTION INDUCED BY
BUBBLES GROWING AND RISING
A.l The general aspect of the liquid motion
induced by bubbles

Isshiki and Tamaki [11] took a Schlieren
motion picture of bubbles rising from a heated
wire and noticed that every bubble trails its own
tail, as it were, of a mushroom type. The author
[12] proposed that the tails may be explained by
a Lagrangian motion of thermal boundary layer
which exists at first near the heated wire, and
calculated the motion theoretically. The changing
shape of the tail of the bubble with time are illus-
trated in Fig. 5, which are in good agreement
with those obtained by the Schlieren motion
picture.

In the nucleate boiling from a heated wire, as
we have seen, the liquid flow induced by the
bubble-motion plays a very important role. In
the nucleate boiling from a flat heating surface,
as in our case, the lignid-flow induced by the
bubble motion is expected to be also very im-
portant. The condition in the case of the latter,

6

=Yejel®

Heated wire

F1G. 5. The changing shape of the tail of a bubble
with time,
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however, is somewhat different from the case of
the former. In the case of a heated wire the flow

is induced in the whole space as shown in Fig. 6a,
but in the case of a heated flat plate the flow is

/TN

(o) [§:)}

Heated
flat plate

2

FIG. 6. Stream lines around a bubble.
(a) A bubble is leaving a heated wire.
(b) A bubble is leaving a heated flat plate.

restricted to the upper half of the space as
shown in Fig. 6b, and the liquid near the flat
plate is expected to flow parallel to the plate.
Consequently the liquid in the thermal boundary
layer over the plate is expected also to move
toward nucleation site. Going into detail, we
see that at first the liquid in the thermal boundary
layer moves away from the nucleation site with
the bubble-growing and then moves back
toward it with the bubble-rising. The resultant
displacement, that is, the algebraic sum of these
two displacements with opposite directions, has
the direction toward the nucleation site. Accom-
panied by the to-and-fro motion of the liquid,
an unsteady velocity boundary layer is expected
to be generated on the heating surface. Its
thickness can be easily estimated and is known to
be much smaller than that of the thermal
boundary layer. Thus the velocity boundary layer
is ignored in the following theoretical analysis
and the flow of the liquid is treated as a potential
flow.

A.2 Liquid motion induced by bubble-growing

The liquid surrounding a bubble which is
growing on a heating surface is pushed away.
Taking a reflected image into account as shown
in Fig. 7, the velocity potential ¢, of the liquid
motion induced by the bubble-growing on the
heating surface can be expressed approximately
as follows:
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y
T
Q /75
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FiG. 7
[
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P P2
041 ry - o 0-41 I,QA_:LJ (11
Py r> 4F

where r is the radius of the growing bubble,
which is a function of time ¢, p; is the distance
from an arbitrary point £ to a source Q and
ps is that from P to Q’ which is the reflected
image of Q. The third and fourth terms of the
right-hand side of (11) are those which correct
the deformation of the bubbles deviating from
spheres caused by the existence of the reflecting
image; b depends on the time rate of the growing
of the bubble and can be determined approxi-
mately as follows. The velocity potential for an
isolated bubble, without reflected image, is
expressed as ¢ = b/p. The liquid velocity on
the surface of the bubble is

Uy == | =5z~ T e
epl, ., r?
which is equal to (dr/d7). Namely
dr
_— . p2
b= —r ar (12)

From (11) and (12) the velocity field in the
liquid is determined. Accordingly, the motions
of a liquid particle with time can be determined
from these equations and the locus of the particle
can be obtained. The co-ordinates x, y of a
liquid particle can be calculated through the
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integration of u; = &¢,/éx and v, = &¢,/2y with
time ¢ as follows:

x =Xo+ [tu(x,yydt
7 3
y=yo=froepa [ B

where x, and y, are their values at the instant
t = O when the nucleus of the bubble is created.

A.3 Liquid motion induced by bubble-rising

The velocity potential ¢, (observed from a
point at rest) and the stream function ¢, (ob-
served from a point fixed to the moving bubble)
in the liquid in which a bubble with a radius r,
is rising from a heating surface with a velocity
U, = constant can be expressed as follows:

(14

%z—wwﬂp-gr+&ﬂ (15)

where p, is the distance from an arbitrary point
P to a doublet Q, p, is that from P to Q' which
is the reflected image of Q, and 4 is the distance
from the heating surface to ¢ as shown in Fig. 8;
h is, of course, a function of time. The form of
the bubble is determined from the following

equation
ro\?® ro\?
T— (- —) = 16
(Pl) T (Pz) {e)
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When the doublet Q is sufficiently apart from
the heating surface, the third term of (16) is small
and the form determined by (16) is approximately
spherical. When Q is near the surface, the form
deviates from a sphere. Practically, the deviation
is not very large, as explained in the footnote.}
As the surface expressed by (16) deviates from
a sphere with the decreasing of A, even if the
deviation is small, the rising velocities of every
portion on the surface (16) are different from
each other. We define U, as the rising velocity
of the lowest point E of the surface (16) in
Fig. 8. Taking e as the distance from F to the
heating surface, we have

(17
From (16)

ro \2 re \3
e () o ao

Thus, the velocity field can be determined as
a function of time from equations (14), (17) and
(18). The co-ordinates of the liquid particle x and
y can be calculated through integration u, ==
Od,/0x and v, = 9¢,/dy with time as follows:

x=x+ [Lw(x,y)d
y=y+ flvlyd f (19)

where x; and y, are their values at the instant of
t; when the bubble leaves the heating surface.

A.4 The motion of liguid particles which exist at
first on the outer edge of the thermal boundary
layer
In this section the motions of liquid particles
which exist at first on the outer edge of thermal
boundary layer are traced theoretically. If we
consider the fluid motion only which occurs in
the vicinity of the heating surface, the velocities
can be expressed rather simply. In the process of

T Strictly speaking, the surface expressed by (16)
cannot contact with the heating surface without tending
of & to 0. As % tends to 0, the deviation of the surface
from a sphere becomes remarkable. But, if # is taken as
small as 07 r,, the distance from the lower surface of
(16) to the heating surface becomes smaller than 0-02 r,.
The surface in this case can be considered to contact
with the heating surface approximately and its deviation
from a sphere is not large.
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the bubble-growing, u, and v, can be obtained
from equation (11) under the condition y < r as
follows:

o h 2 2467 )
T T e T i
” |
SR S L (20
11 b,l [ (’.2 _Jr xz)z i‘r( )
134 1234 7 |
ety

In the process of the bubble-rising, u, and r, can
be obtained from (14) under the condition y < A
as follows:

20
TN B S LT I
EER T gy T
x components of the velocities u, and w, are
independent of y. y components of the velocities
vy and r, are products of y and functions of x
only.

Denoting the thickness of thermal boundary
layer as 6, the loci of the motion of the liquid
particles which were at first on the outer edge of
the thermal boundary layer are obtained from
(13), (19), (20) and (21). The loci thus obtained
have such a shape as shown in Fig. 2. The locus
shown in the figure is correct in shape, but is
exaggerated in size. Its actual proportion to the
thickness of thermal boundary layer 6 is far
smaller than that shown in the figure. A liquid
particle which exists at first on the outer edge of
the thermal boundary layer P was washed away
to the point @ with the growing of a bubble.
Then the liquid particle comes back to the point
R with the rising of the bubble from the heating
surface to a point at infinity. As a matter of fact,
if the height of the bubble from the heating
surface # exceeds 5 rg, even though the bubble
does not go to the point at infinity, the liquid
particle can be considered practically to reach
the point R. And the horizontal location of the
point R is nearer to the nucleation site than the
original point P. We denote the vertical dis-
placement from P to R by 3,. The computed
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values of &,/8 vs. x/r, are shown in Fig. 9.
The relation can be approximated as follows:

% 0126 () o

Y
; . (22)

\

102

AT

ts/'A

o3 b

8,/8

7
'
~
o

S ..8°L=o.526 (,I}c ) '“/'1\\

X7,

Fic. 9. The variation of 3,/5 with x/r,. Marks
show the calculated values.

A.5 The effect of many nucleation sites

In the last section the case of an isolated
nucleation site is considered. In this section we
deal with the cases where many nucleation sites
distribute on the heating surface: §,/5 for these
cases can be obtained by summing up all the
contributions from each nucleation site on the
heating surfaces.

We assume that the nucleation sites are
arranged on the heating surface in the equi-
Jateral triangular pattern as shown in Fig. 10.
The length 7 shown in the figure is taken as a
characteristic length to determine the distance
between two neighbouring nucleation sites. In
other words / determines the surface density of
nucleation sites of the heating surface. We also
assume that the sizes of rising bubbles are all
the same independently of nucleation sites and
that the periods of the bubble formation m all
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the nucleation sites are also identical. Conse-
quently the total vertical displacement of a
liquid particle during one period T can be ob-
tained simply through the summation of the

< Y hg Y 1
o ) e e e 1 e
N A EN A~ UM -
\\Y// \\1// \\r// \T/ \\T/
A I
X ) ! N

AY
/
\
7
S
\
/

FiG. 10. The pattern of distribution of nucleation
sites.

contributions from all the nucleation sites. Thus
the total vertical displacement at an arbitrary
point P on the heating surface can be written
using the equation (22) as follows:

3* x,\ 282
(5, =0 ()

where x, is the distance from P to an arbitrary
nucleation site v, and the summation Y is
carried out over all the nucleation sites » on the
heating surface.

If / is elongated or contracted, x, varies with
it proportionally. Thus we can put as follows:

(24)

23)

x,=c,l

where c, is a proportional constant.

The number of nucleation sites per unit area n
varies with the length /. The relation between
n and / is expressed as follows;
201
WO
Substituting (24) and (25) into (23), we get

n 25)

5
(g)P = 0383 (WY o2 (26)

+ The phases of the bubble-formation in each nuclea-
tion site need not always be equal.

HM.—-3Q
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(3,/3)p thus obtained is, of course, a function of
the position P.
Actually the summation of the series X ¢, 232

was performed in the following way. The thirty
terms caused by the nearest thirty nucleation
sites from P are summed up directly. These
thirty, nucleation sited, are in the inside of a
circle with a radius of about 5 7 and P as its
centre. Concerning the terms caused by the
nucleation sites in the outside of the circle, the
terms are calculated considering approximately
that the nucleation sites are distributed con-
tinuously over the heating surface, and con-
verting the summation into an integral. Then, the
summation of the first thirty terms and the
integral are summed up together.

In the next place we want to take the mean
value of (8,/8)p over the heating surface. This
can be obtained through taking a mean value
over a hexagonal portion of the heating surface
around a nucleation site B in Fig. 10. The mean
value is indicated by (8,/8)mean. In the practical
calculation, an annular area as shown in Fig. 10
is used instead of the hexagonal area for the
sake of simplicity. The outer radius of the
annular area is equal to / and the inner one is
//4. The reason why the inner circular area with
radius //4 is hollowed out is that the relation
shown in (22) does not hold in the vicinity of
the nucleation site. The error which is expected
to occur through the hollowing out of the inner
circular area is, however, supposed to be so small
that it can be neglected, because its area is only
one-sixteenth of that of the outer circle.

The mean value thus obtained is expressed as
follows:

8
( 3*) = 55 (nr2)t1s, 27
mean
For example, in the case where ro = 2 mm and
n=}cm2 (8*/8)mean = (-026.

A.6 Qualitative explanation of the relation found
by Jakob

The liquid motion in the surrounding of a

rising bubble is caused by the following two

1 In truth the region where (22) does not hold depends
upon #, and is independent of /. In the text we assumed
that the portion where (22) does not hold is so small that
it is in the inside of the inner circle with a radius //4.
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actions. One is the pushing-up of the liquid in the
topside of the bubble and the other is the filling-
up of the cavity left by the moving bubble with
the liquid. If many bubbles would rise from a
nucleation site one after another at a very small
spacing with each other, the greater part of the
cavity left by a preceding bubble would be filled
up with the liquid portion pushed up by the
succeeding bubble and consequently the liquid
at some distances from the line of the bubbles
would scarcely move. In this case the liquid
motion in the thermal boundary layer would not
occur, so that the formation of bubbles could
not take place. Thus it can be said, at least, that
a necessary condition for the occurrence of the
formation of bubbles is the sufficient largeness of
the spacing L between two neighbouring bubbles.
To be exact, the ratio of the spacing L to the
radius of bubbles r, cannot be smaller than a
certain lower limit c¢.

- = ¢ = const. (28)
Fo

The frequency of bubble-formation at a nuclea-

tion site can be written by

Uo
f= (29)

where U, is the velocity of bubble-rising.
From (28) and (29)

U
fro< =",

(8

(30

From the experiment performed by Datta {13],

T. HARA

U, can be assumed approximately to be constant,
so that

fro < const, == ¢, (31}
In the next place we should like to explain that
only the sign of equality in (31) is possible. it is
obvious from (4) that n, f and r, must increase
with the heat flux . Among these three variables,
only » has a different character from two other
variables fand r,. n cannot increase continuousiy
but takes only discrete values, that is, r increases
stepwise. We denote the area of the heating
surface by §. The number of the nucleation sites
on the heating surface is expressed by N == uS.
Now we suppose a case in which the heat-flux ¢
would increase gradually. fand r, would increase
with it also gradually. Only N could not increasc
untif the increment of the heat-flux amounts to a
certain finite value Ag. At the instant when the
increment of the heat-flux comes up lo this
definite value Ag, N increases by 1, that is,
jumps to N -+ 1. Consequently n == N/S jumps
to (N + 1)/S. The amount of heat-flux increment
Agq required to make N jump to N - 1 is known
to be considerably large from the Nishikawa’s
experiment [2]. Returning to the subject. we
consider the case again where the heat-flux ¢ is
increasing gradually; f'r, increase with ¢ and get
nearer to the critical value ¢, in (31). As My
required for jumping of N by | is considerably
large, it is considered to be probable that fr,
becomes equal to ¢, just before N jumps to N -+ 1.
In this way the equality

ro= e (32)
is always satisfied. This is the very refation that
was found by Jakob [1].

Résumé—Dans 'ébullition nucléée, la bulle qui prend naissance sur la surface chauffée grossit, guitte
ia paroi et s’éléve. Le mouvement induit dans la couche limite thermique au cours de ce processus est
calculé et on obtient le flux de chaleur transporté par ce mouvement liquide. Le flux de chaleur ainsi
calculé est égal a celui transmis, par conduction, de la surface chauffée au liquide et a la chaleur latente
enlevée par la bulle par unité de temps. A partir de ces relations, on obtient la formule théorique

suivante

Af = 0,14 nsg

ou 46 est la différence entre la température de Ia surface chauffante et la température de saturation, n
est le nombre de “sites de formation de bulles” par unité de surface et ¢ le flux de chaleur moyen. Elie
a une forme voisine de celle de la formule expérimentale obtenue & partir des mesures de Nishikawa

Afexp = 0,448 1 g’

Les valeurs numériques calculées a partir de ces deux formules sont en bon accord.



THE MECHANISM OF NUCLEATE BOILING HEAT TRANSFER

Zusammenfassung—Beim Blasenverdampfen bildet sich an der Heizfliche an einem Keim eine Blase, die
wichst, sich von der Fliche ablost und aufsteigt. Die wihrend dieses Prozesses in der thermischen
Grenzschicht ausgeloste Fliissigkeitsbewegung wird berechnet und man erhélt den durch die Bewe-
gung der Fliissigkeit zur Keimstelle hin hervorgerufenen Wirmestrom. Der so ermittelte Warmefluss ist
gleich dem von der Heizfliche an die Fliissigkeit durch Leitung iibertragenen und gleich der von den
Blasen pro Zeiteinheit abgefiihrten latenten Wirme. Aus diesen Beziehungen erhilt man folgende
theoretische Formel

Af = 0,114 n~igs

mit 4¢ als Temperaturdifferenz zwischen Heizfliche und Sattdampf, » der Anzahl der Keime pro
Fliacheneinheit und 4 dem mittleren Wirmefluss. Diese Formel ist ihrer Form nach der von Nishi-
kawa gefundenen Gebrauchsformel

Agexp = 0,448 nhzlsq‘;f

dhnlich. Die nach beiden Formein errechneten Zahlenwerte stehen miteinander in leidlich guter
Ubereinstimmung.

Anporamua—]Ipu DysHPLKOBOM KHUIEHMH NMY3HpeK, 06pasylomuiica B ONpeneeHHOM MecTe
HA IOBEPXHOCTM HArpeBa, PAcTeT, OTPHBAETCA OT Hee ¥ TOTHUMAETCH BBepX. B crarbe
OPUBOAUTCA pacueT ABIKEHUA KHUIKOCTH, BOSHUKAWIErO B TEMJIOBOM ITOIDAHHUYHOM CJI0E BO
BpeMs 9TOro Iporecca, a TaKKe TemIOBOrO IIOTOKA K MeCTy OGpasoBaHHA IIyBHPBHA.
BrruncienHas TakuM 00pasoM WMHTEHCHBHOCTH TEIIONEPEHOCA BHIIOYaeT B CeGH TelIoBOil
NOTOK TeINIOMPOBOAHOCTH OT IIOBEPXHOCTH HArpeBa K KUAKOCTH U CKDHTYIO TeIIoTy,
YHOCHMYI0 ITy3HIPbKAMH B eIUHHIY BpeMeHH.
1z sTix cOOTHOWEHNI MONYYeHA CAEAYIOIAA pacdeTHAA QopMya:

AG= 0,114 n-1 4t

rie Af—pasHOCTh TeMIEPaTyphl IIOBEPXHOCTH HArpeBa M TEMIepaTyphl HACHILIEHHSA, #-YUCIO
MecT 00pas0BaHMA NMYSHPLKOB HA EXNHUNY INIONATM M §—CPeSHAA BeIUYMHA TEMIIOBOroO
MOTOKA. YPaBHeHHE Mo cBoelt fopme GINBKO K 9KCIEPUMEHTAIBHON 3aBUCHMOCTH

Afexp = 0,448 n~t gt

UnciieHHBIe BeIMYMHHL, MOJYYeHHBE W3 BTHX ABYX (QOpMYI, XOPOIIO COrIacyOTCA MEmILy
co0oif.
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